EIC Cold QCD Future Physics Program

(Andreas Metz, Temple University)

e Introduction and overview of currently discussed topics

e Pillars of EIC science program
— Nucleon spin
— Nucleon mass
— Multi-dimensional parton structure
— Gluon saturation

e Some further important (new) topics
— Transversity distribution and tensor charge
— DIS structure function g and multi-parton correlations
— Weak mixing angle

e Conclusions

Other EIC-talks: I. Vitev: EIC HF Overview
F. Ringer: Jet measurements at the FIC
Y. Furletova: EIC Overview
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EIC Topics from Current Yellow Report Outline

7. The EIC Measurements and Studies

7.1 Global Properties and Parton Structure of Hadrons
7.1.1 Unpolarized parton structure of the proton and neutron
7.1.2 Spin structure of the proton and neutron
7.1.3 Parton structure of mesons
7.1.4 Origin of the mass of the nucleon and mesons
7.1.5 Multi-parton correlations
7.1.6 Inclusive diffraction and rapidity gap physics
7.1.7 Global event shapes and the strong coupling constant

7.2 Multi-Dimensional Imaging of Nucleons, Nuclei and Mesons
7.2.1 Nucleon and meson form factors
7.2.2 Imaging of quarks and gluons in position space
7.2.3 Imaging of quarks and gluons in momentum space
7.2.4 Wigner functions
7.2.5 Light (polarized) nuclei



7.3 The Nucleus: A Laboratory for QCD
7.3.1 High parton densities and saturation
7.3.2 Diffraction
7.3.3 Nuclear PDFs
7.3.4 Particle propagation through matter and transport properties of nuclei
7.3.5 Collective effects
7.3.6 Special opportunities with jets and heavy quarks
7.3.7 Short-range correlations, origin of nuclear force
7.3.8 Structure of light nuclei
7.3.9 Coherent and incoherent photoproduction on heavy targets

7.4 Understanding Hadronization
7.4.1 Hadronization in the vacuum
7.4.2 Hadronization in the nuclear environment
7.4.3 Particle production for identified hadron species
7.4.4 Production mechanism for quarkonia and exotic states
7.4.5 New particle production mechanisms
7.4.6 Spectroscopy



7.5 Connections with Other Fields
7.5.1 Electro-weak and BSM physics
7.5.2 Neutrino physics
7.5.3 Cosmic ray/astro-particle physics
7.5.4 Other connections to pp, pA, AA
7.5.5 Connections with HEP and Snowmass Process

7.6 Related Theory Efforts
7.6.1 Lattice QCD
7.6.2 Radiative corrections at the EIC

e Many interesting important topics

e Several topics have received little attention so far



Nucleon Spin

e Spin sum rule (Jaffe, Manohar, 1989)
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e EIC impact study (Aschenauer, Borsa, Lucero, Nunes, Sassot, 2020)

— EIC pseudo data for inclusive and semi-inclusive DIS (for flavor separation)
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— study suggests remarkable constraints on helicity distributions
: —4 ~1
in x-range 10 " - 10

— large uncertainties below z ~ 10~ (beyond reach of EIC)
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— significant uncertainties in helicity contributions to spin sum rule remain

— small-x behavior of helicity distributions crucial
(Kovchegov, Pitonyak, Sievert, 2015 / ...)

Related EIC impact study by JAM Collaboration ongoing



Nucleon Mass

e Forward matrix element of total QCD energy momentum tensor

(T" = (P| T" |P) = 2P"P"

— both (T*,) and (T related to nucleon mass

— most mass sum rules in literature based on decomposition of {(T",) or (T
into quark and gluon parts
(Ji, 1994 / Lorcé, 2017 / Hatta, Rajan, Tanaka, 2018 / Metz, Pasquini, Rodini, 2020)

e Trace anomaly
(Adler, Collins, Duncan, 1977 / Nielsen, 1977 / Collins, Duncan, Joglekar, 1977 / ...)

T, = (M) g + v, (M) + E(FaﬁFaﬁ)R
29

— anomalous term of operator for EMT trace due to quantum effects

— what is role of trace anomaly for the nucleon mass?



e Decomposition of T (Rodini, Metz, Pasquini, 2020 / Metz, Pasquini, Rodini, 2020)

H, = (wT 1D - o) p quark kinetic plus potential energy

H,, = (M) g quark mass term

H

1
g §(E2 + B2)R gluon energy

— 3 nontrivial terms (with 2 of them being independent)

— no contribution from anomaly at operator level

e Comparison with first decomposition of 7% (Ji, 1994, 1995)

(%Q)[Ji] = (YT iD - ay)g

Ad+4n, -
(Hon) iy = — (m)p

1
(Hg)[,]i] = E(Ez + BQ)R

B,
(HG)[Ji] — @(F BFaB)R

— 4 nontrivial terms

— sum rules differ by i of trace anomaly at operator level



e Relation between matrix elements (Metz, Pasquini, Rodini, 2020)
T 1 2 2 n 5 af
(Y iD-ay)r+ g(E + B)g ) = { Ym(myy)r + %(F Fop)r

— no corresponding relation at operator level

— knowing trace anomaly means knowing contribution from parton energy to mass

e Phenomenology (Metz, Pasquini, Rodini, 2020)

H,, 7.9% H, 33.0% H, 59.1%

— u, d, s quarks included in ‘H,,
— heavier quarks contribute significantly to H,,,
— phenomenology depends on renormalization scheme, but not ‘H,,

— "Only 2% of proton mass due to Higgs mechanism” at variance with QCD

e What is relation to EIC physics ?

— threshold production of quarkonium could provide direct input for trace anomaly

— many (recent) studies of this interesting topic
(Kharzeev, 1996 / Hatta, Yang, 2018 / Mamo, Zahed, 2019 / Boussarie, Hatta, 2020 /
Gryniuk, Joosten, Meziani, Vanderhaeghen, 2020 / ...)



Multi-Dimensional Parton Structure of Hadrons
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(arXiv:1212.1701)

e Main objects of interest for multi-dimensional imaging
1. W(z,bp, kr) Wigner distributions (5-D quasi-probability distributions)
2. f(=z, ET) GPDs (in impact parameter space)
3. f(x, ky) TMDs

e Since EIC White Paper, significant progress concerning measuring Wigner distributions
(Hatta, Xiao, Yuan, 2016 / Altinoluk, Armesto, Beuf, Rezaeian, 2015 / ...)



Generalized Parton Distributions

e Main motivations
— Impact parameter distributions (Burkardt, 2000 / ...)

f(xa ET) & GPD($7 S — O) &T)

— spin sum rule and orbital angular momentum (Ji, 1996)

1 1
quf_ldzc:c(Hq+Eq) Jg:/O dz (H, + E,)

t=0 t=0
— pressure distribution inside nucleon (Polyakov, Shuvaev, 2002 / ...)

e |mportant observables for EIC: DVCS and HEMP

v Y v /v
x+H§ x—i—f/ \x—£
P T p Ty

(arXiv:1212.1701)

— DVCS theoretically well under control

— Higher-order corrections for HEMP can be large
(Ivanov, Schafer, Szymanowski, Krasnikov, 2004 / Diehl, Kugler, 2007 / ...)

— Y production may also become important channel (for gluons)



Simultaneous fit of HERA data and EIC pseudo data for DVCS
(Aschenauer, Fazio, Kumeri¢ki, Miiller, 2013)
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— focus on sea quarks (including transverse target polarization, E,) and gluons
— study suggests remarkable prospects

— HEMP will provide further constraints



Transverse Momentum Dependent Parton Distributions

e Confinement implies (intrinsic) transverse momentum — confined motion

e Overview of leading-twist quark TMDs

Quark Polarization

Longitudinally Polarized Transwersely Polarized

(arXiv:1212.1701)

e |mportant observables for EIC
— semi-inclusive DIS: /N —/hX, fA—/FhX
— jet production: IN —Lljet X, LA —/LjetX
— hadron inside jet: ¢ N — £(h,jet) X, LA — £(h,jet) X

e Significant recent theory advances related to jet production for TMD studies
(Liu, Ringer, Vogelsang, Yuan, 2018 / ...)



e Example: EIC impact study for Sivers function flLT
(Vladimirov, Seidl, Bury, Prokudin, ..., work in progress)
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— current uncertainty of Sivers function somewhat under debate, but definitely large

— study suggests remarkable prospects



Gluon Saturation

e Basic idea and big picture
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— gluon distribution cannot keep rising forever when going to lower x

» 1/x

— gluons split (g — gg) and, once density gets too large, re-combine (gg — g)

— saturation is expected to start at certain x, below (saturation) scale Q?(a:)

— new state of high-density gluon matter (color glass condensate)



e Advantage of eA over ep collisions: Qi ~ A3
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—_ perturbative regime ——»
| I ! ! ' | ! ! I ! | N ' ) ; |

6?""0.'5""%'"'1.'5""2'""2.'5
Noco Q5 (GeV?)

e Key observable 1: di-hadron correlations in e A collisions
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— saturation leads to suppression of back-to-back di-hadron correlations

— di-hadron correlations in ep vs e A (relative effect increases as /s increases)

e Key observable 2: diffractive scattering
— cross sections depend on square of gluon distribution



Transversity Distribution and Tensor Charge

e Transversity hy(x) is key quantity characterizing nucleon spin structure

e Tensor charge
1 —
dq = / dz (hi(z) — hi(z)) gr = du — dd
0

e Tensor charge from global analysis (at scale p = 2 GeV)
(Cammarota, Gamberg, Kang, Miller, Pitonyak, Prokudin, Rogers, Sato, 2020)

(courtesy by D. Pitonyak)
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» This is the most precise phenomenological determination of gy to date

» Our tensor charges, especially du, show excellent agreement with lattice:
du = 0.72(19), 6d = —0.15(16)



e EIC impact study

(Pitonyak, Seidl, Gamberg, Kang, Prokudin, Sato, work in progress)

(courtesy by D. Pitonyak)
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— study suggests remarkable prospects

— errors for gr somewhat better than current lattice calculations



DIS Structure Function g+ and Multi-Parton Correlations

Polarized DIS parameterized through two structure functions: g, (zx, Q2) gr(zx, Q2)

Wandzura-Wilczek approximation (Wandzura, Wilczek, 1977)

dy
twist-3 WW
gr=gr " +gr" (37):/ — 91(y)
x
g% gives information on quark-gluon-quark correlations (going beyond densities),

also related to transverse force acting on quarks and Sivers effect (Burkardt, 2008)

EIC impact study (Cocuzza, Gamberg, Melnitchouk, Metz, Pitonyak, Sato, ..., work in progress)
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— new fit of available data on g1, and fit including EIC pseudodata

— significant constraints in x-range 10

— study suggests remarkable prospects
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gr can likely be extracted over large x-range



Weak mixing angle

e Scale dependence of weak mixing angle contains information about BSM physics
e Previous EIC impact studies exist (e.g., Zhou, Deshpande, Huang, Kumar, Riordan, 2016)

e New EIC impact study (Cocuzza, Melnitchouk, Metz, Sato, ..., work in progress)
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— parity-violating inclusive DIS for p and d targets
— simultaneous fit of unpolarized PDFs and sin” Oy
— EIC can provide important constraints for considerable range of Q)

— also shown are data points at similar @), plus projected error for SoLID



Conclusions

EIC is next major QCD frontier

CD-0 approval by DOE was crucial milestone

Many physics questions can be addressed for the first time or, at least, at a new level

Strong interest in community to further EIC science case

Hopefully, second detector will be added

Further support for faculty positions will be critical for full success of project

EIC likely to also provide exciting unexpected results



